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EVOLUTION OF THREE-DIMENSIONAL GRAVITATIONALLY WARPED WAVES 

DURING THE MOVEMENT OF A PRESSURE ZONE OF VARIABLE INTENSITY 

A. E. Bukatov and A. A. Yaroshenko UDC 532.593:550.3 

Three-dimensional, unestablished, gravitationally warped waves arising due to 
the motion of a harmonically time-varying pressure zone over a solid, thin 
plate floating on the surface of a homogeneous liquid of finite depth have been 
studied in the linear formulation. In the absence of a plate, three-dimensional 
waves are generated by the movement of a region of periodic perturbations, where 
established waves have been studied in [i, 2], and unestablished waves have been 
investigated in [3-5]. The evolution of three-dimensional, gravitationally 
warped waves formed during the motion of a constant load over a plate has been 
considered in [6]. 

i. We will consider a homogeneous, ideal, incompressible liquid of finite depth H 
covered by a thin, elastic plate. Beginning from time t = 0, a force of the following form 
acts on the surface of the plate: 

p = po/(Xl,: y) exp (icrt), x l  = x -F v t ,  v = const. ( 1 . 1 )  

We w i l l  i n v e s t i g a t e  t h e  e v o l u t i o n  o f  e x c i t e d  wave m o t i o n  assuming  t h a t  t h e  l i q u i d  i s  u n p e r -  
t u r b e d  up u n t i l  t h e  t ime  when t h e  f o r c e  ( 1 . 1 )  a c t s  and t h a t  t h e  i n t e r f a c e  be tween t h e  p l a t e  
and t h e  l i q u i d  ( t h e  f l e x u r e  o f  t h e  p l a t e )  5 i s  h o r i z o n t a l .  

C o n s i d e r i n g  t h e  m o t i o n  o f  t h e  l i q u i d  t o  be t h a t  o f  a p o t e n t i a l  and t h e  v e l o c i t y  o f  
t h e  p a r t i c l e s  o f  t h e  l i q u i d  and t h e  e l e v a t i o n  o f  t h e  l i q u i d - p l a t e  i n t e r f a c e  t o  be s m a l l ,  
we w i l l  f i n d  in  t h e  c o o r d i n a t e  s y s t e m  Xl,  y ,  which  i s  c o n n e c t e d  t o  a p r e s s u r e  zone  moving 
w i t h  a v e l o c i t y  v ,  t h e  v e l o c i t y  p o t e n t i a l  ~0 t h r o u g h  t h e  L a p l a c e  e q u a t i o n  

A~ = 0, --H<z<0, --oo <x< oo,: "oo <y< oo (1.2) 

with the following boundary and initial conditions 

" (z  = 0),i Dxv4~ + • + ~ + (q~t + vq~x) + ----- pg (1 .3)  
~ = 0 (z = - -H) , :  ~(x,  y ,  z,  O) = ~ (x ,  y ,  O) = 0,, 

D Pl h Eh 3 V4  : 0 a Oa Oa 
D l = - ~ , :  •  D = i 2 0 _ , 2 ) , ~  ax4 +2az--~@~+~ ,: 

02 02 02 
F = T t  2 + 2v 0 ~ +  v 2 az---~,~ 
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where p is the density of the liquid; E, H, p:, and p are the modulus for normal elasticity, 
the thickness, the density, and the Poisson coefficient for the plate; ~ and ~ for z = 0 
are related by the condition 5t = ~z - vSx. We will from now on omit the subscript 1 from 
the variable xl. 

Using Fom:ier transformations with respect to x, y and the Laplace transformation with 
respect to t from (1.2), (1.3) for the elevation of the plate-liquid interface, we find 
that 

oo 

: = 8n 2a-5-e{~t ~ S l*(ra' n ) M  (r)~p(m, . . . .  n,t)e~(m=+nY)dmcln, . 
-- ao 

2 ~ o - - i a , t  .jr i - - i A - t  a ~ Po = a lA  2 ~ ~a--~ e. ~ ,: - - ~  

~(r) = [ l ( r )M( r ) ] l /~ , ;  /(r) = I -+- D~r~,; r = (m ~ + n~)~/~ 

M(r) = rg(l + • th  rH) -* th  rH,; A~ = G + vm + 6i% 8~ = ( - - i ) ~  

f*(m, n) is the transformant of the Fourier function f(x, y). The first term in the expres- 
sion for ~ is the solution of the problem without the initial conditions, i.e., it is repre- 
sentative of established oscillations. The second and third terms are determined by the 
initial conditions and characterize the evolution of wave motion. 

Since 

, LA - -  "/': 

t 

j 

0 

then ~ has the following form after making a transition to polar coordinates for an axially 
symmetric pressure distribution (i.i): 

__  _~a  " t  - -  8= ~ Im  [e ,o (J1 - -  52)1,; 

Jj = ~ ~ ~ rf* (r) M (r) e-qrR c~ (o~v)-Aj~]dOd~dr,, 
o o - - ~ / 2  

R = (x 2-t-y2)1/2 x =  / ? c o s ? , :  y = R s i n ' y , :  n / = r c o s O , j n = r s i n o .  

( 1 . 4 )  

One can investigate the asymptotic behavior of the expression for ~ for large values 
of R and t by using the steady-state phase method for multidimensional integrals. Steady- 
state points (r, 0, ~) for Jj satisfy the following system of equations 

R cos (O - -  ?) - -  (vcosO + 8jT')~ = 0 , ;  v ~ s i n 0 - - R s i n ( O - - ? )  = 0 ;  ( 1 . 5 )  

o + Sj~ + vr cos O = 0 , ~  
( 1 . 6 )  

where the primes denote differentiation with respect to r. 

Equation (1.6) has the following real roots: 

O ---- • 0 i = arc cos(--Ss~s),; ~s = (~ -F 81(0/(vr) 

for ITj[ <_ i. After substituting O = +_0j into (1.5), we find that 

"&~_~oo(,If 9 -- a) = fn :'rn/~ I = ~ (i. 7) 

'~ .L( ,~% - -  a)  ~ l , ( [ z  - -  ) )  ,~ = t% :,(~) fZ = L ~1 ( 1 . 8 )  

Equation (1.7) can be used to determine the values of r that correspond to the steady- 
state points of the integrals Jj in the established and unestablished modes. The applicability 
of the steady-state points of the integration region is determined by the conditions 0 <_ $ _< 
t. This condition along with relation (1.8), characterizes the propagation of the oscillations. 
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TABLE I TABLE 2 

O<v<v m 

vm<v<vn  

un<v<%~ 

Vo~<V 

O<v<v n 

v> v~ 

h 

O~<?~<z~ 3, . 

O~<?<?~ 1, . 

~2"<?<?~ 2, 4 

?3<?< 

I 

0<9<% 

0 > %  

/203</)</312 O~<?~<n 

h 

3 

-7- 

T 
c~>O 

The behavior of the function X~(r) for 0 < o < o 0 and of the function x2(r) for o > 0 

is qualitatively shown in Fig. i, where a-g corresponds to 0 < v < v0~ , v0~ < v < v~, v~ < 

v < v02 , v02 < v < V~o, v > V~o, v03 < v < v~2 , v > v~2 , respectively. If o > o0, the plots 

of x~(r) for 0 < v < v~z and v > vi~ are similar to the plots of x2(r) for v03 < v < v02 

and v > v~2. Here, 

~o = [ [ % ~ ( I ~ 0  - I%~( [3~) ] (13~  - ~ I ) - L  vo~ = ~(I~), 

2 t 2 "1o =. [~(~+)11/" ~,+ = (~ +_ ~)/r, T7 % - r ( % )  T'/~", 

,~'o(~)=o, z~(~,~)=o, ~(~+,7)=o, ~'~(&~)=o, 

~ < ~, ~ < ~,  ~o < ~,  ~+ < ~, 
r l < r f < ~ l < r 3 < 8 2 < r 4 ,  r s < ~ 3 < r 6 ,  

where  r k  (k = 1,  2 ,  3,  4)  a r e  t h e  p o s i t i v e  r o o t s  o f  t h e  e q u a t i o n  1 - x l  2 = 0,  and  r s ,  s a r e  
t h e  p o s i t i v e  r o o t s  o f  t h e  e q u a t i o n  1 - x22 = 0. 

I t  f o l l o w s  f rom an a n a l y s i s  o f  t h e  b e h a v i o r  o f  t h e  f u n c t i o n s  •  t h a t  t h e  number k 
o f  p o s i t i v e  r o o t s  a j k  o f  Eq. ( 1 . 7 )  i s  a f u n c t i o n  o f  t h e  a n g l e  ~,  t h e  f r e q u e n c y  o f  t h e  o s c i l -  
l a t i o n s  o ,  and  t h e  d i s p l a c e m e n t  v e l o c i t y  v o f  t h e  p r e s s u r e .  T h i s  i s  e v i d e n t  f rom T a b l e s  
1 and 2,  whe re  t h e  v a l u e s  o f  k f o r  a~k and a f k  a r e  i n d i c a t e d .  B e c a u s e  o f  t h e  symmet ry  o f  
t h e  wave m o t i o n  r e l a t i v e  t o  t h e  x a x i s ,  v a l u e s  o f  ~ a r e  p r e s e n t e d  i n  t h e  t a b l e s  o n l y  o v e r  
t h e  r a n g e  0 <_ ~ <_ ~. H e r e ,  u = a r c t a n •  ~ = a r c t a n •  ~2~ = a r c t a n •  ) ,  
and t h e  e q u a t i o n  ,( = a r c t a n •  i s  u s e d  f o r  d e t e r m i n i n g  t h e  a n g l e ~  i f  v ~  < v < v02 
and t h e  a n g l e  ~ i f  v > v02 .  One s h o u l d  n o t e  t h a t  

xl ( ~ , ~ ) =  O, z~ (0:2,.~) = O, 0:~ < % ~3 < %. 

I f  o > k ,  t h e  f o l l o w i n g  e s t i m a t e s  a r e  v a l i d  f o r  a f k :  

r~ ~ 0:.~3 ~ ro (%3 < v < v~), % ~ 0:21 ~ 0~3 ~ 0:22 ~ a t  ~ 0:23 

rs(v > w,,,). 

In addition, 

rl ~ a14 ~ rf(O < v < Vol), r l ~ 0:14 ~ r2 < ra ~ o:13 ~ r4(vol < v <  v n ) ,  
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r 1 ~ c~15 ~ r 2 < r a ~ a n ~ a i ~ a~t ~ a~ ~ 0~13 ~ r~ (V n < V < VO~), 

Yl ~ (9['14 ~ {%1 ~ C~'12 ~ (~2 ~ (Z13 ~ F4 (V ~ U02 ) 

for ~ < cr o and 

r l ~ c z l  4 ~ r 2 ( O < v < v l ) ,  r l ~ z l ~ a l ~ a 1 2 ~ a 2 ~ a 1 3 ~ r 2  

(v > vl~) 

for o > o 0 . 

Each root ~jk of Eqs. (1.7) characterizes a system of waves ~jk of the form 

~jk = ~ ~ (ajh)cos BCj (~zjh) + ot + 6jh "U + 0 

*~ = --  aff  (r) M (r) [ ( t - -  "~]) "cv]-l ( 2~ [ r [ ) -1/', 

0~ : 6 j r  [ ( ~  - ~ ) 1 / ~  s i .  ~ - ~ ~o~  ~1, 
j = 1, k = I - -  4 ; ' /  = 2, k = 1, 2, 3; 5~h = (--i)J+h(k r 4), 514 = l . t  

t h a t  a r e  g e n e r a t e d  i n  t h e  r e g i o n s  R < u j k t ,  u j k  = u j ( a j k )  o f  t h e  a n g u l a r  z o n e s  c o r r e s p o n d -  
i n g  t o  t h e  v a r i a t i o n  r a n g e  o f  t h e  d i s p l a c e m e n t  v e l o c i t y  o f  t h e  p r e s s u r e  z o n e s  ( s e e  T a b l e s  
1 and  2 ) .  The d i m e n s i o n s  o f  t h e  a n g u l a r  z o n e s  a r e  g i v e n  by t h e  v a l u e s  o f  t h e  a n g l e s  Y1, 
Y2' ~3' 5/11' ~22" 

Therefore, for motion of a pressure zone (i.i), one (~14), two (~13, ~14; ~14, ~23), 
three (r ~ik, k = 3, 4; r k = 2-4), four (elk, k = 1-4; ~2~, ~k, k = 2-4), five 
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(~2s,  E l k ,  k : 1 - 4 ) ,  s i x  (~zk ,  k = 2 -4 ,  ~2k, k : 1 - 3 ) ,  o r  seven R -/(~k~ k : 1 -4 ,  ~2k, k : 1 -3)  
systems of waves can be excited with amplitudes on the order of . They generate the 

oscillation of the plate and the wave motion of the liquid before and after the pressure 
zone. 

The waves ~z~, ~=z, r are caused by the periodic changes in the pressure over time 
(o > 0). Then, ~=z behave as transverse waves and ~== behave as longitudinal ship waves 
generated in the corresponding angular zones beyond the moving zone of periodic pressure. 
However, for an elastic plate (E > 0), these waves are formed when v > vz=, and for a liquid 
with an absolutely fragile plate (E = 0), or with an open surface (h = 0), they are formed 
when v > 0. 

The waves ~14 are generated when v > 0, and when the zone of periodic pressure is not 
displaced [7]. They are circular in form. These waves are also formed in a liquid with 
an open surface or with an absolutely fragile plate. Depending on the velocity v, the waves 
~14 may be found around the pressure zone (v < v02) or in the angular zone 171 < Ys beyond 
the zone (v > v02). If v02 < v < vz0, the waves ~14 do not form directly before the pressure 
zone along its direction of motion, but for perturbations caused by the waves r that are 
parallel to this direction, the waves overtake the pressure zone (73 > ~/2) When v > vz0 , 
thisdoes not occur (Ys < ~/2). 

The waves ~zz and ~12 are transverse and longitudinal waves, respectively, that arise 
beyond the moving perturbation zone. They also form when the pressure zone moves along 
the plate (a free surface) with constant intensity [6, 8]. For an elastic plate, ~11 and 
~12 are generated for vlz < v < v02 and v > v11. For an absolutely fragile plate or for 
a free surface, ~11 are formed when 0 < v < v02 , and ~12 are formed when v > 0. 

The waves ~13 and ~23 are warped. They are generated by the moving pressure zone only 
in the presence of a solid, elastic plate (E > 0). The waves ~13 are formed when v > v0z 
and ~2s are formed when v > v03. Of these, r are excited by pressures of variable (o > 
0) and constant (o = 0) intensity, and ~=s are excited only for displacements of pressure 
that are periodic over time. The direction of waves ~zs and ~2~ characterize the angle 

\ ~ o l  7 / v2 \1/2 . (v2 1)!/2 ~ 
7 ~  ~,~ 7 o 2 = a r c t g  ..,.-N---- 

/203 

The waves ~zs for v01 < v < vzl and r for v0s < v < vz2 are found around the pressure 
zone, while for v > vzl and v > v12 , they are located in the angular zones 72 < Iu S ~ and 

< IYd 

The leading perturbation fronts ~jk (j = i, k : 1-4/ j : 2, k : i, 2, 3) are displaced 
with a velocity of ujk. 

2. We considered an ice plate for making quantitative estimates of the critical dis- 
placement velocities of the zone where the nature of the wave motion changed and of the 
dimensions of the angular zones covered by the waves [9-11]. Hence, the elasticity modulus, 
the density, and the Poisson coefficient of the ice plate were taken to be 3"109 N/m 2, 870 
kg/m 3, 0.34, and the density and depth of the liquid were assumed equal to 103 kg/m s and 
i00 m. The distribution vjk (j = 0, k = I, 2, 3; j = i, k = 0, i, 2) of oscillation fre- 
quencies for h = 0.2 m is indicated in Fig. 2, where the dashed and dot-dash lines 1 repre- 
sent the velocities v02 and v0s, and lines 2 represent the velocities vl0 and v12. The 
dotted line characterizes v01, and the solid line is for vzl. The square on the axis o denotes 
the value of o0. 

It follows from Fig. 2 that vz2 and vz3 grow with an increase in o. The velocities 
v0z, v02, and vz0 then decrease, and Vli has a minimum. For motion of a pressure zone with 
constant intensity along a solid, elastic plate, there are three critical values for v: 

V 0 = V01 = V03 , V 1 = VII = VI2 , / ~ =  VI0 = V02. For an absolutely fragile plate (crushed 
ice) or for an open liquid surface with motion of a periodic pressure zone, the critical 
velocities will be v02 and vz0, which decreasse with an increase in o, and for a pressure 
zone with constant intensity there is only a single critical velocity v = #gH. 

The velocities v0z, v02, and v0s are also critical for displacement of a planar front 
of periodic pressure zones along an elastic plate (solid ice) [12]. If a planar front of 
pressure zones with constant intensity moves along an elastic plate, then v = v0 and v = 
/gH will be critical. In a liquid with an absolutely fragile plate (crushed ice) or with 
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an open surface, movement of a planar front of periodic pressures results in the critical 

velocity v = v02, while for a planar front of constant pressures v = /7 is critical. 

The dimensions of the angular zones covered by the waves as functions of the frequency 
of the oscillations and of the displacement velocity of the pressure zone are given in Figs. 
3-5 for h = 0.2 m. 

The velocity distribution ~k (k = i, 2, 3) for v is shown in Fig. 3, where the dashed and 
dot-dash curw~s denote the values of the frequency o = 0 and 0.2 sec -I, and lines 1-3 corre- 
spond to YI, Y2, and 73- The upper part of the closed solid curve between the triangle 
and the square represents the maximum values of the angle 73, while the lower part pertains 
to the maximum values of the angle YI- These values are attained when v = v02. The square 
and triangle indicate the maximum values of the angles 7i,3 which pertain to the frequencies 
o = 0 and o0. The values indicated by the circles are attained when v = vll. The dependences 
indicated in Fig. 3 show that, with an increase in v, the angles Y2 and ~3 decrease while YI 
increases for frequencies less than a0, which is equal to -0.46 sec -l for the initial param- 
eters given above. The highest frequency corresponds to the smallest angle Y3 and the largest 
angle ~1,2. One should note that for frequencies of ~ > o0, the angles Y2 and ~3 also de- 
crease with an increase in v. An increase in o will then lead to a decrease not only in Y a 
but in ~2- 

The velocity distributions 711 (dashed lines) and Y22 (solid lines) over v are given 
in Fig. 4, where lines 1-3 pertain to the frequencies 0.01, 0.2, 0.5 sec -I. The values 
of the angles for v = v12 are indicated with circles. These dependences reveal that Y2= 
decreases with an increase in v and o. The angle ~ll also decreases with an increase in 
the frequency. As a function of v, the angle Yll has extrema whose values and locations 
are functions of o. When o = 0, the part of curve u to the right of the maximum coin- 
cides with y3(v), while the part to the left corresponds to the function Yl(V) (see Fig. 
3). Angle ~2:2 then coincides with Y2. 

The~angles Y01 and Y02 decrease with an increase in v. This is illustrated in Fig. 
5, where ~01(v) is indicated by dashed lines and ~02(v) is indicated by the solid lines, 
while lines 1-3 pertain to the frequencies 0.2, 0.4, 0.8 sec -I. The values in the circles 
are attained when v = v 0 i, and those values in the squares are attained when v = v03. It 
also follows from Fig. 5 that an increase in a leads to a decrease in Y0~ and an increase 

in ~0=- If o = 0, then 701 = ~0~. 
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VARIATIONAL MODEL OF ORGANIZED VORTICITY IN PLANE FLOW 

Yu. N. Grigor'ev and V. B. Levinskii UDC 532.5:532.6172.4 

In the research of the last decade [mostly experimental (see the review [i]) and numeri- 
cal (see the bibliography in [2])] a new phenomenon in turbulent flow has been widely studied: 
that of organized or coherent structures. The characteristic traits of coherent structures 
that are common in different flows have been formulated. In particular, the primary effect 
of nonviscous mechanisms on their formation and evolution have been noted. Hence, the ana- 
lytical models of coherent structures use exact and approximate solutions of the Euler equa- 
tions for the dynamics of an ideal fluid. However, this approach naturally forces various 
simplifications, and cannot completely take into account the existing information on coherent 
structures. For example, in models of shear layers [3-5], chains of coherent structures 
were considered with a uniform distribution of vorticity inside each of the individual struc- 
tures. In [3, 5] coherent structures were represented by Kirchhoff and Rankine vortices. 
In [6-8] the equations for the chains of coherent structures were closed using circular 
vortices from a single-parameter family [9]. 

In most of the models of shear layers, the interaction of an individual structure with 
other coherent structures is taken into account approximately. For example, in [3] the 
effect of the chain was replaced by a uniform deformation field. In [4, 5] vortices of 
a given shape were used, and in [6-8] the simplest approximation of point vortices was used. 

In the present paper an analytical model of coherent structures in plane flow is con- 
structed by using a variational principle borrowed from information theory. The field of 
vorticity in the coherent structure is found from the condition that the informational en- 
tropy functional be a maximum. In this approach one can use additional constraints to take 
into account different kinds of information on the basic properties of coherent structures 
in specific examples, such as dynamical invariants, symmetry properties of the structures, 
and characteristics of the average flow field. 

The variational principle is applied to the problem of a linear chain of coherent struc- 
tures in an infinite shear layer. The functional equation for the vorticity field in an 
individual coherent structure is given, in which the nonviscous interactions of the struc- 
tures are systematically taken into account. It is found that one of the analytical solutions 
of the equation can be represented in closed form. This is the single-parameter family 
of Stuart vortices [i0]. Using this solution, we construct a model of a chain of coherent 
structures for a time-dependent shear layer and our model reproduces the general features 
of its evolution. It is shown that for a certain choice of the family parameter one can 
obtain, with the help of the Stuart vortices, certain average characteristics of turbulent 
mixing layers which correspond to experimental data satisfactorily. 
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